I: Incentro ; O: Circuncentro
r: Inradio ; R: Circunradio
OM, ON y OQ : Mediatrices
ON' = ha ; OQ' = hb ; OM' = hc
• QUEREMOS HALLAR EL VALOR DE ha+hb+hc
• Se traza NR (R en proyección de AC) tal que <NRA = 90
Se traza OR' // AC
• <M'OA = <R'NO = <C y OA = ON = R
=> ∆M'OA = ∆R'NO -> NR' = hc y OR' = c/2
• ∆NRA ~ ∆NCN' ( ya que <NCN' = <NAC = <A/2 )
=> NR/NN' = AR/CN' -> (NR'+R'R)/(ON-ON') = (AQ'+Q'R)/CN'
(hc+hb)/(R-ha) = (b+c)/a
• a(hb+hc) = (b+c)(R-ha) ..... [1] ; Similarmente:
b(ha+hc) = (a+c)(R-hb) ..... [2]
c(ha+hb) = (a+b)(R-hc) ..... [3]
• Sumando [1], [2], [3] y simplificando
a(hb+hc)+b(ha+hc)+c(ha+hb) = (a+b+c)R
• Agregando a ambos lados: aha+bhb+chc = 2(Area ∆ABC)
(a+b+c)(ha+hb+hc) = (a+b+c)R + 2[(a+b+c)/2]r
• Finalmente: ha+hb+hc = R+r
Thursday, July 31, 2008
Property 1.4
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment